

Authenticated Group Diffie-Hellman Key Exchange:

Theory and Practice

Olivier Chevassut (UCL - LBNL)

- J.- J. Quisquater (UCL Promotor)
- D. Agarwal (LBNL co-advisor, U.S.A)
- D. Pointcheval (ENS co-advisor, France)

Outline

- ✓ Introduction
 - motivation
 - research objectives
- Background
- Contributions
- Secure reliable multicast channels
- Provably secure group Diffie-Hellman key exchange
- Provably secure dynamic group DH key exchange
- Experimental results
- Conclusion and further work

Motivation

- An increasing number of distributed applications need to communicate within groups, e.g.
 - collaboration and videoconferencing tools (Access Grid)
 - distributed computations (Computational Grid)
 - replicated servers
- An increasing number of distributed applications have security requirements
 - privacy of data
 - protection from hackers
 - protection from viruses and trojan horses
- Group communication must address security needs

Research Objectives

- Provide an efficient and reliable communication between participants aggregated into a group
 - communication channel directly connecting the participants (no intermediary server)
 - remove dependence on centralized servers (bottleneck, scalability)
 - support participants spread across the Internet
- Provide a secure communication among the participants
 - support confidentiality, authenticity, and integrity
 - support access control based on certificates
 - security services optional

Outline

- Introduction
- ✓ Background
 - secure reliable two-party communication channels
 - algorithms for two-party Diffie-Hellman key exchange
- Contributions
- Secure reliable multicast channels
- Provably secure group DH key exchange
- Provably secure dynamic group DH key exchange
- Experimental results
- Conclusion and further work

Secure and Reliable Two-Party Communication

- Provide an efficient and reliable communication between two participants
 - communication channel connecting the participants
 - client-server situation
 - dependence on a centralized server (SSL, KDC)
 - participants are spread across the Internet
- Provide a secure communication between the two participants supporting
 - confidentiality, authenticity, and integrity
 - authorization and access control
 - security services optional

Secure Reliable Two-Party Communication : Architecture

Secure Reliable Two-Party Communication : Components

- The Transport Control Protocol Layer (TCP)
 - provide SSL with reliable delivery of messages
 - provide SSL with fifo ordered delivery of messages
 - provide SSL with membership notifications
- The Secure Socket Layer Protocol (SSL)
 - symmetric crypto algorithms (e.g. Rijndael, and HMAC)
 - a key exchange algorithm enables the client and the server to establish a session key (e.g. DH, RSA)
 - access control based on certificates (Public-Key Infrastructure)

The Two-Party Diffie-Hellman Key Exchange

- Establishing a secure channel between a client and a server is reduced to the problem of generating a session key sk
- The session key is used to achieve data secrecy and integrity
- The original DH algorithm from 1976 was only secure against passive adversaries αx_2

$$sk = g^{x_1x_2}$$

Designing Algorithms for Two-Party DH key Exchange

- Ad hoc or heuristic security
 - attack-response design not successful
 - helps avoid known attacks
- Formal Methods [BAN90]
 - formal specification tools
 - successful at finding flaws and redundancy
 - assurance limited to formal system
- Provable Security [GM85]
 - based on complexity theory
 - successful at avoiding flaws
 - useful to validate cryptographic algorithms

How Provable Security works

1. Specification of a model of computation

- instances of players are modeled via oracles
- adversary controls all interactions among the oracles
- adversary's capabilities are modeled by queries to the oracles
- adversary plays a game against the oracles

2. Definition of the security goals

authentication, freshness and secrecy of session keys, forward-secrecy

3. Statement of the intractability assumptions

computational/decisional Diffie-Hellman (CDH and DDH)

4. Description of the algorithm and its proof of security

 proof shows by contradiction that the algorithm achieves the security goals under the intractability assumptions

Contributions

- [ACTT01] A framework for secure and reliable communication within peer-to-peer groups, IEEE Symposium on Computer and Communications, 2001
- 2. [BCPQ01a] Provable secure group DH key exchange, ACM Computer and Communications Security, 2001
- 3. [BCP01b] Provable secure dynamic group DH key exchange, Asiacrypt, 2001
- 4. [BCP02] Refinements forward-secrecy, Eurocrypt, 2002

Outline

- Introduction
- Background
- Contributions
- ✓ Secure reliable multicast channels
 - a security framework to implement multicast channels
 - algorithms for group Diffie-Hellman key exchange
- Provably secure group Diffie-Hellman key exchange
- Provably secure dynamic group DH key exchange
- Experimental results
- Conclusion and further work

[ACTT01] Security Framework (SGL)

- Symmetric crypto algorithms (e.g. Rijndael and HMAC)
 - implement an authenticated and encrypted channel
- An authenticated group DH key exchange algorithm enables group members to establish a session key
- A certificate-based access control mechanism makes sure that only the legitimate parties have access to the session key
 - off-line (does not participate in key exchange)

Secure Reliable Multicast Communication : Architecture

Group DH key exchange algorithm

Access control algorithm

Symmetric cryptographic algorithms

Secure Group Layer (SGL)

Reliable Multicast Transport Protocol

The Reliable Multicast Transport Layer

- Provide SGL with reliable and ordered delivery of messages
 - data messages are delivered in order FIFO, partial, and total - at each member of the group
- Provide SGL with membership notifications
 - membership changes delivered in order with respect to data messages
- Several systems provide a reliable multicast layer
 - e.g., Isis, Ensemble, Totem and InterGroup

The Group Diffie-Hellman Key Exchange

- The session key is
 - -- sk= $H(g^{x_1x_2...x_n})$
- Ring-based algorithm with signed flows:
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instances broadcasts the result
 - instances compute the session key from the broadcast

The Algorithm

- Up-flow: U_i raises received values to the power of x_i and forwards to U_{i+1}
- Down-flow: U_n processes the last up-flow and broadcasts

Outline

- Motivation
- Background
- Contributions
- Secure reliable multicast channels
- ✓ Provably secure group Diffie-Hellman key exchange
 - model of computation
 - security goal of authenticated key exchange
 - description of an algorithm and its proof of security
- Provably secure dynamic group DH key exchange
- Experimental results
- Conclusion and further work

[BCPQ01a] Group Diffie-Hellman Key Exchange: The Setting

- Member characteristics
 - small number of users (up to 100 members)
 - members have similar computing power
 - no hierarchy among members (no client/server)
 - many-to-many communication
- Membership characteristics
 - all members join the group at once
 - membership participants are known in advance

Model of Communication

- A multicast group consisting of a set of n players
 - each player is represented by many instances/oracles
 - each player holds a long-lived key (LL)

Modeling the Adversary

- Adversary's capabilities modeled through queries
 - send: send messages to instances
 - reveal: obtain an instance's session key
 - corrupt: obtain a player's long-lived key

Freshness Related Queries

Security Goal : AKE Authenticated Key Exchange

- Implicit authentication
 - Only the intended partners can compute the session key
- Semantic security
 - the session key is indistinguishable from a random string
 - modeled via a Test-query

Security Goal: The Game

An Algorithm for Authenticated Group DH Key Exchange

- The session key is
 - -- sk= $H(g^{x_1x_2...x_n})$
- Ring-based algorithm with signed flows:
 - up-flow: the contributions of each instance are gathered
 - down-flow: the last instances broadcasts the result
 - instances compute the session key from the broadcast
- Many details abstracted out

The Algorithm

- Up-flow: U_i raises received values to the power of x_i and forwards to U_{i+1}
- Down-flow: U_n processes the last up-flow and broadcasts

Security Measurement

- Using ideal-hash assumption
- Theorem

- The adversary can break the algorithm in two ways
 - (1) the adversary forges a signature w.r.t some player's LL-key => it is possible to build a forger (CMA)
 - (2) the adversary is able to guess the bit b involved in the Test-query => it is possible to solve an instance of the GCDH problem

Outline

- Motivation
- Background
- Contributions
- Secure reliable multicast channels
- Provably secure Group DH key exchange
- ✓ Provably secure dynamic group DH key exchange
 - model of computation
 - description of an algorithm and its proof of security
- Experimental results
- Conclusion and further work

[BCP01b] Dynamic Group DH key Exchange: The Setting

- Additional membership characteristics
 - members join and leave the group at any time
 - network partitions and merges (i.e asynchronous network with failures)
 - membership is incrementally defined

Modeling the Adversary

- Adversary's additional queries
 - setup: initialize the multicast group
 - remove: remove players from multicast group
 - join: add players to the multicast group

An Algorithm for Authenticated Dynamic Group DH Key Exchange

The session key is

$$--sk=H(g^{x_1x_2...x_n})$$

- Ring-based with signed flows
- Defined by two additional algorithms
 - JOIN
 - REMOVE
- Many details abstracted out

The REMOVE Algorithm

• Down-flow: player with highest index (U_{gc}) raises the previous saved broadcast to the power of its new private exponent and broadcast the result

The JOIN Algorithm

- Up-flow: U_{gc} raises the previous saved broadcast to the power of its new private exponent and forwards to U_{i+1}
- Down-flow: Un processes the last up-flow and broadcasts

Security Measurement: Authenticated Key Exchange (AKE)

- Ideal-hash assumption
- Theorem

```
Advake(t, Q, q_s, q_h) \le 2 \cdot n \cdot \text{Succ}^{\text{cma}}(t') + 2 \cdot Q \cdot (n_s) \cdot s \cdot q_h \cdot \text{Succ}^{\text{gcdh}}(t'') 

t', t'' \le t + (Q + q_s) \cdot n \cdot T_{\text{exp}}(k)
```

- The adversary can break the protocol in two ways
 - (1) the adversary forges a signature w.r.t some player 's LL-key => it is possible to build a forger (CMA)
 - (2) the adversary is able to guess the bit b involved in the Test-query
 - => it is possible to come up with an algo that solves an instance of the GCDH problem

Outline

- Motivation
- Background
- Contributions
- Secure reliable multicast channels
- Provably secure group DH key exchange
- Provably secure dynamic group DH key exchange
- ✓ Experimental results
- Conclusion and further work

The Access Control Algorithm in SGL: a user join

- 1. **Authorization:** The user requests its permission from TTP and obtains a membership authorization certificate
- 2. Join multicast group:
 - 2.1. The user submits a join request
 - 2.2. Secure Group Layer gets a membership change notification
- 3. Access control:
 - 3.1. The user broadcasts its certificate
 - 3.2. U_{gc} checks the user's permission and, if authorized, initiates group DH key exchange
- 4. **Deliver secure membership**: When the group DH key exchange is done, Secure Group Layer delivers the secure membership notification to the application

A Preliminary Implementation of SGL

- Implementation in C: Totem, GDH with DSA, Akenti
- Performance : group size = 15 members, merge operation with variable-size sub-groups.

Conclusion

Completed

- [ACTT01] "An Integrated Solution for Secure Group Communication in Wide-Area Networks", IEEE Symposium on Computers and Communication'01
- [BCPQ01a] "Authenticated GDH key exchange: the static case", ACM CCS'01
- [BCP01b] "Authenticated GDH key exchange: the dynamic case",
 Asiacrypt'01
- [BCP02a] "Forward secrecy in GDH key exchange", Eurocrypt'02
- Other related publications
 - [BCPPQ02] "Two Views of Authenticated GDH Key Exchange",
 DIMACS Cryptographic Protocols in Complex Environments, 2002

Conclusion

- [BCP02b] "The Group Diffie-Hellman Problems", SAC'02
- [BCP02c] "GDH Key Exchange secure against dictionary attacks", Asiacrypt'02
- [BAC02] "A Practical Approach to the InterGroup Protocols", J. of Future Generation Computer Systems, 2002
- Current and on-going work
 - SGL security improvements, and delivery semantics
 - Demonstration of an application using SGL and InterGroup Protocols